HOMO- AND SPIROCONJUGATIVE EFFECTS IN THE SIGMATROPIC REARRANGEMENT OF 1,1'-SPIROBIINDENES

Herbert Kiesele

Fakultät für Chemie der Universität Konstanz Postfach 5560, D-7750 Konstanz, West Germany

Summary: Due to homoconjugative interactions $2,3$ -dihydro-1,1'-spirobiindene and 'l,l'-spirobiindene yield isomeric benzofluorenes in thermal, photochemical, and electron transfer induced rearrangement.

Recently it was shown that the electron transfer induced rearrangement of $1,1$ disubstituted indenes proceeds by a dianion¹, following a concerted, suprafacial pathway^{\leq}.

The exceedingly high reaction rates are in sharp contrast to the predictions of Woodward and Hoffmann³. Therefore we assumed homoconjugative assistance. An analogous interpretation has been given by McCullough for the "forbidden" photorearrangement of 1 -arylindenes⁴ (see also $5,6$).

To test the influence of homo- and spiroconjugation on sigmatropic shifts we studied the thermal, photochemical, and electron transfer induced rearrangements of $2,3$ -dihydro-1,1'-spirobiindene 1 and $1,1'$ -spirobiindene 2. With competing alkyl-, alkenyl-, and aryl-substituents, a geometry allowing for homoand spiroconjugative interactions⁷, and three electronically very different rearrangement mechanisms, 1 and 2 seemed especially suitable for that purpose. The experimental results are summarized in Table I and will be discussed with the aid of HMO-calculations. The yields listed in Table I refer to chromatographically purified products.

Table I

The "allowed" thermal isomerization of $2,3$ -dihydro-1,1'-spirobiindene 1, performed at 200 $^{\circ}$ C in diphenylether as a solvent, specifically yields 6,11-dihydro-5H-benzo[a]fluorene 2 by aryl migration and succeeding hydrogen transfer 4,8 . 3 is partially oxidized to 11H-benzo[a]fluorene 4 . Just the same products are obtained in the "forbidden" photorearrangement, which was realized by irradiation of 1 in cyclohexane at 10° C with a high pressure mercury lamp. Reduction of 1 with freshly distilled potassium in 1,2-dimethoxyethane¹ and hydrolysis of the resulting fluorenyl salts again produces 3 together with $\frac{\mu}{\epsilon}$, the latter being formed by intermolecular hydrogen transfer². The small amounts of $3-(2$ -ethylphenyl)-indene 5 arise from a radicalic side reaction which may also produce $6,7$ -dihydro-5H-benzo[c]fluorene 6 under different conditions².

The thermal, photochemical, and electron transfer induced rearrangement of 1,1'-spirobiindene 2 results in isomeric 7H-benzo[c]fluorene $\frac{7}{7}$, the experimental conditions being the same as above. 7 is obtained in high yields by sigmatropic [1.5]shift of the alkenyl group, followed by hydrogen migration or hy-

drogen abstraction and protonation of the fluorenyl anion (see above). No IIHbenzo[a] fluorene $\underline{4}$ was detected, though $\underline{4}$ is thermodynamically more stable than the sterically hindered 7H-benzo[c] fluorene 7^9 .

These findings fully agree with HMO calculations which include homo- and spiroconjugative interactions. The latter are schematically represented in Figure 1 for the dianions of 1 and 2.

Figure 1

Figure la shows the LUMO of one indene moiety in HMO approximation together with the enumeration of the 1,1'-spirobiindene system. The coefficients, characterized by the radius (amount) and the hatching (sign) of each circle, are in good agreement with ESR data of 1,1-disubstituted indene radical anions $^{10} \cdot$

Coupling of an indene dianion with a benzene ring or an other (neutral) indene by homo- or spiroconjugative interaction significantly decreases the total π electron energies of $\frac{1^{2}}{2}$ and $\frac{2^{2}}{2^{2}}$. Nevertheless, the right-angled orientation of the interacting p-orbitals represents a maximum π -electron energy for the spirobiindene dianions. As is easily shown by first order perturbation theory twisted configurations are more favourable. Because of the very large coefficient in position 2 and the much smaller one in position 8, 1^{2-} tends towards the intermediate 6,11a-dihydro-5H-benzo[a]fluorene dianion (Figure 1b), whereas 2^{2-} tends towards the intermediate 6aH-benzo[c]fluorene dianion (Figure 1c). As an example Table II shows some numerical data for the 1,1'-spirobiindene dianion, calculated with standard parameters¹² and varying spiro resonance integrals B' . For the right-angled configuration we assumed $B' = 0.2$ B_0 , as proposed by Simons and Fukunaga¹³. The twisted configurations, representing the very beginning of the rearrangement, were simulated by a synchronous decrease and increase of B' from $B' = 0.20$ B_0 to $B' = 0.15$ B_0 and $B' = 0.25$ B_0 . Even with this cautious parametrization the results clearly show, that the rearrangement towards benzo[c]fluorene is favoured by the dianion 2^{2-} . Analogous results were obtained for all other reactions listed in Table I. The close correlation between migratory aptitude (alkenyl > aryl > alkyl) and homoconjugative interaction strongly supports our starting hypothesis.

Table II Spiroconjugative Interactions in 1,1'-Spirobiindene Dianion 2^{2-}

References:

- **1.** H. Kiesele, Angew. Chem. in press
- 2. H. Kiesele, to be published
- 3. R.B. Woodward and R. Hoffmann, Angew. Chem. 81, 797 **(1969).**
- 4. J.J. McCullough, Acc. Chem. Res. 13, 270 (1980).
- 5. M.F. Semmelhack, H.N. Weller, and J. Clardy, J. Org. Chem. 43, **3791 (1978).**
- 6. D.J. Field, D.W. Jones, and G. Kneen, J.C.S. Perkin I 1978, 1050
- 7. A. Schweig, U. Weidner, R.K. Hill, and D.A. Cullison, J. Am. Chem. Soc. 95, 5426 (1973).
- **8.** L.L. Miller and R.F. Boyer, J. Am. Chem. Soc. 93, 650 (1971).
- **9.** M. Orchin and R.A. Friedel, J. Am. Chem. Soc. 71, 3002 (1949).
- **10.** H. Kiesele, Chem. Ber. 111, 1908 (1978).
- **11.** neglecting electron-electron repulsion
- **12.** E. Heilbronner and H. Bock, Das HMO-Model1 und seine Anwendung, p. 84, Verlag Chemie GmbH, Weinheim/Bergstr.(1968).
- 13. H.E. Simmons and T. Fukunaga, <u>J. Am. Chem. Soc. 89</u>, 5208 (1967).

(Received in Germany 26 November 1980)